Abstract

The ‘in-diffusion’ method was used to study the diffusion behavior of radionuclide 137Cs in compacted bentonite using a capillary. The results (distribution coefficient, Kd, apparent and effective diffusion coefficients, Da and De) derived from the capillary method are in good agreement with the literature data, and fit the Fick’s second law very well. The experiments were carried out at 3.3×10−3 and 3.3×10−5mol/l cesium, pH 3–12, ionic strength 0.1M NaClO4, and at room temperature. The results suggest that the diffusion of cesium in compacted bentonite is dependent on solution concentrations and pH values. In agreement with the literatures, the Kd values derived from the capillary experiments are in most cases lower than those derived from batch experiments: the Kd values are about one-half to one-third the values of those from batch experiments. The interlaminary space plays a very important role to the sorption, diffusion and transport of Cs+ in compacted bentonite. The effective diffusion coefficient is higher than that of other nuclides in compacted bentonite, and the diffusion of cesium in compacted bentonite may be dominated by the surface diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.