Abstract

The fair division of indivisible goods has long been an important topic in economics and, more recently, computer science. We investigate the existence of envy-free allocations of indivisible goods, that is, allocations where each player values her own allocated set of goods at least as highly as any other player's allocated set of goods. Under additive valuations, we show that even when the number of goods is larger than the number of agents by a linear fraction, envy-free allocations are unlikely to exist. We then show that when the number of goods is larger by a logarithmic factor, such allocations exist with high probability. We support these results experimentally and show that the asymptotic behavior of the theory holds even when the number of goods and agents is quite small. We demonstrate that there is a sharp phase transition from nonexistence to existence of envy-free allocations, and that on average the computational problem is hardest at that transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.