Abstract
Arterial stenosis plays an important role in the progressions of thrombosis and stroke. In the present study, a standard axisymmetric tube model of the stenotic artery is introduced and the degree of stenosis η is evaluated by the area ratio of the blockage to the normal vessel. A normal case (η = 0) and four stenotic cases of η = 0.25, 0.5, 0.625, and 0.75 with a constant Reynolds number of 300 are simulated by computational fluid dynamics (CFD), respectively, with the Newtonian and Carreau models for comparison. Results show that for both models, the poststenotic separation vortex length increases exponentially with the growth of stenosis degree. However, the vortex length of the Carreau model is shorter than that of the Newtonian model. The artery narrowing accelerates blood flow, which causes high blood pressure and wall shear stress (WSS). The pressure drop of the η = 0.75 case is nearly 8 times that of the normal value, while the WSS peak at the stenosis region of η = 0.75 case even reaches up to 15 times that of the normal value. The present conclusions are of generality and contribute to the understanding of the dynamic mechanisms of artery stenosis diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.