Abstract
AbstractIn a previous article, the author introduced the idea of intrinsic density—a restriction of asymptotic density to sets whose density is invariant under computable permutation. We prove that sets with well-defined intrinsic density (and particularly intrinsic density 0) exist only in Turing degrees that are either high (${\bf{a}}\prime { \ge _{\rm{T}}}\emptyset \prime \prime$) or compute a diagonally noncomputable function. By contrast, a classic construction of an immune set in every noncomputable degree actually yields a set with intrinsic lower density 0 in every noncomputable degree.We also show that the former result holds in the sense of reverse mathematics, in that (over RCA0) the existence of a dominating or diagonally noncomputable function is equivalent to the existence of a set with intrinsic density 0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.