Abstract

Halpern and Pearl introduced a definition of actual causality; Eiter and Lukasiewicz showed that computing whether X = x is a cause of Y = y is NP-complete in binary models (where all variables can take on only two values) and Σ^P_2 -complete in general models. In the final version of their paper, Halpern and Pearl slightly modified the definition of actual cause, in order to deal with problems pointed out by Hopkins and Pearl. As we show, this modification has a nontrivial impact on the complexity of computing whether {X} = {x} is a cause of Y = y. To characterize the complexity, a new family D_k^P , k = 1, 2, 3, . . ., of complexity classes is introduced, which generalises the class DP introduced by Papadimitriou and Yannakakis (DP is just D_1^P). We show that the complexity of computing causality under the updated definition is D_2^P -complete. Chockler and Halpern extended the definition of causality by introducing notions of responsibility and blame, and characterized the complexity of determining the degree of responsibility and blame using the original definition of causality. Here, we completely characterize the complexity using the updated definition of causality. In contrast to the results on causality, we show that moving to the updated definition does not result in a difference in the complexity of computing responsibility and blame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.