Abstract

We consider the computational complexity of some problems dealing with matrix rank.<br /> Let E, S be subsets of a commutative ring R.<br />Let x1, x2, ..., xt be variables. Given a matrix M = M(x1, x2, ..., xt)<br />with entries chosen from E union {x1, x2, ..., xt}, we want to determine<br />maxrankS(M) = max rank M(a1, a2, ... , at)<br />and<br />minrankS(M) = min rank M(a1, a2, ..., at). <br />There are also variants of these problems that specify more about the<br />structure of M, or instead of asking for the minimum or maximum rank, <br />ask if there is some substitution of the variables that makes the matrix<br /> invertible or noninvertible.<br />Depending on E, S, and on which variant is studied, the complexity<br />of these problems can range from polynomial-time solvable to random<br />polynomial-time solvable to NP-complete to PSPACE-solvable to<br />unsolvable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call