Abstract

Optimal feedback control (OFC) provides a powerful tool to interpret voluntary motor control, highlighting the importance of sensory feedback in the control and planning of movement. Recent studies in the context of OFC have increasingly used mechanical perturbations and visual shifts to probe voluntary control processes. These studies reveal the surprising sophistication of corrective responses, which are goal-directed and exhibit knowledge of the physical properties of the limb and the environment. These complex feedback processes appear to be generated through transcortical feedback pathways. The research reviewed here opens and enhances several lines of discovery, including testing whether feedback corrections share all of the attributes associated with voluntary control, identifying how prediction influences optimal state estimation, and importantly, how these voluntary control processes are generated by the highly distributed circuitry within the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call