Abstract

The standard k-e equations and other turbulence corrections are evaluated and reported with respect to their applicability in three-dimensional flows. The turbulence models are formulated on the assumption that an isotropic eddy viscosity and the modified Boussinesq hypothesis adequately describe the stress distributions, and that the source of predictive error is a consequence of the modelled terms in the k-e equations. Turbulence model corrections are incorporated to investigate their impact on these errors. Predictions from various turbulence models are compared with experimental data from an isothermal 3-D configuration. The data comparisons delineate the relative advantages and disadvantages of various modifications. The k-e model performs competitively with other model corrections and in some instances is judged to be superior than the modified treatments. However, given the additional computational time and the marginal superiority of the investigated models, it is recommended that present 3-D computational code calculations retain the standard k-e model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.