Abstract

Computational modeling in psychiatry has generally followed from efforts to understand cognitive processes (McClelland and Rumelhart 1986) or the nervous system (Hodgkin and Huxley 1952). This stands to reason: psychiatric disorders are disorders of thought and central nervous system activity. This chapter argues that the computational science of collapse, which describes the manner and likelihood of failures in complex systems, provides a framework in which to use computational modeling for relating mechanisms to behavioral outcomes. This science, known as reliability engineering, is a branch of applied probability theory that has now been used for almost a century to help understand and predict how inorganic, complex systems break down. The idea of a fault tree analysis is introduced, a tool developed in reliability engineering which may be able to incorporate and provide a broader structure for more traditional computational models. Finally, some of the current challenges of psychiatric classification are unpacked, and discussion follows on how this framework might be adapted to provide a unifying framework for classification and etiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.