Abstract

A major goal for global change studies is to improve the accuracy of general circulation models (GCMs) capable of predicting the timing and magnitude of greenhouse gas-induced global warming. Research has shown that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. Of particular value to reducing the uncertainties associated with cloud-radiation interactions is the measurement of cloud base height (CBH), both because it is a dominant factor in determining the infrared radiative properties of clouds with respect to the earth`s surface and lower atmosphere and because CBHs are essential to measuring cloud cover fraction. We have developed a novel approach to the extraction of cloud base height from pairs of whole sky imaging (WSI) cameras. The core problem is to spatially register cloud fields from widely separated WSI cameras; this complete, triangulation provides the CBH measurements. The wide camera separation (necessary to cover the desired observation area) and the self-similarity of clouds defeats all standard matching algorithms when applied to static views of the sky. To address this, our approach is based on optical flow methods that exploit the fact that modern WSIs provide sequences of images. We will describe the algorithm and present its performance as evaluated both on real data validated by ceilometer measurements and on a variety of simulated cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call