Abstract

We consider numerical methods for thermodynamic sampling, i.e. computing sequences of points distributed according to the Gibbs-Boltzmann distribution, using Langevin dynamics and overdamped Langevin dynamics (Brownian dynamics). A wide variety of numerical methods for Langevin dynamics may be constructed based on splitting the stochastic differential equations into various component parts, each of which may be propagated exactly in the sense of distributions. Each such method may be viewed as generating samples according to an associated invariant measure that differs from the exact canonical invariant measure by a stepsize-dependent perturbation. We provide error estimates a la Talay-Tubaro on the invariant distribution for small stepsize, and compare the sampling bias obtained for various choices of splitting method. We further investigate the overdamped limit and apply the methods in the context of driven systems where the goal is sampling with respect to a nonequilibrium steady state. Our analyses are illustrated by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.