Abstract

As they travel through the gas of the host galaxy, some of the gamma-rays emitted in a Gamma-Ray Burst (GRB) may experience Compton scattering and reach an observer even if he is not located in the direction of the primary photon beam. Such a process will last until the GRB photons have left their host galaxy, and the ambient electron density becomes negligible. We investigate the observability of this indirect GRB light, which would be seen as a faint trail along the path of the GRB photons, long after the initial event. We find that the so-called Compton trail of a 10 51 erg GRB can easily be observed from Earth, wherever the explosion occurred in our Galaxy in the past few thousand years. Gamma-ray surveys of the Galaxy can therefore provide constraints on the true GRB rate (or number of GRBs per supernova), independently of the GRB beaming angle. We also calculate the expected light curve and shape of the emitting region as a function of time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.