Abstract

Abstract Inert gases at high pressure may compress and dissolve in tissue of intact organism to result in narcosis, reversal of the effects of anesthetic agents or hyperexcitability. The effects of 51 and 102 atm of helium, hydrogen, nitrogen, argon, xenon and nitrous oxide on the molecular motion of nitroxide spin-labeled phospholipid-cholesterol bilayers were measured by electron paramagnetic resonance (EPR) techniques. Immediately, application of high pressures of all gases decreased the molecular motion of the fatty acid chains of the membrane phospholipids; the magnitude of ordering was linearly related to the amount of pressure applied. The second effect was an increase in molecular motion of the fatty acid chains which appeared more slowly due to the slow gas diffusion through the column of lipid dispersion. The magnitude of disorder of the phospholipid membrane at equilibrium correlated with the known lipid solubilities of the gases in olive oil as well as with the anesthetic potency of all the gases except xenon. The environment of the spin label became less polar as the gases diffused into the bilayer. The present studies in the phospholipid model membrane show that the net effects of high pressure gases in the lipid phase consist of an initial ordering of the membrane by compression opposed by the ability of the gas molecules to diffuse and dissolve in the lipid bilayers and disorder them. It is thus suggested that the resultant perturbations of the membrane lipid fluidity by high pressure gases may subsequently be transmitted to membrane-bound protein to result in changes that may be associated, in part, with the diverse effects of anesthesia and of the high pressure nervous syndrome (HPNS) observed in deep-sea divers. The model system may be useful in developing gas mixtures which minimize HPNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.