Abstract
A 'loss-effective' compression method which based on the change detection of raw image data is proposed for dealing with a sequence of satellite images. The average compression ratio we gained, compared with some typical satellite image formats, is about 2:1 to 3 :1. This sounds not so impressive when compared with the most current compression techniques which used in multimedia processing. However, some information will be lost in those methods, while our approach is information-loss effective, which is crucial for further satellite image analysis. Moreover, the framework can be combined with different compression algorithms to obtain different trade-offs between the compression ratio and the computation time. Experimental results based on real satellite images are included. Finally, other issues including the further optimization of the methods and some other possible applications of the method are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.