Abstract
Thalassemia is one of the most widely distributed monogenic disorders in the world and affects the largest number of people. It can manifest a wide spectrum of phenotypes from asymptomatic to fatal, which is associated with the degree of imbalance between α- and β-globin chains. Therefore, individuals with different genotypes could present with a similar phenotype. Genetic analysis is always needed to make a correct diagnosis. However, routine genetic analysis of thalassemia used in the Chinese population identifies only 23 common variants, resulting in many cases undiagnosed or being misdiagnosed. In this study, we applied a long-read sequencing-based approach termed comprehensive analysis of thalassemia alleles (CATSA) to 30 subjects whose hematologic screening results could not be explained by the routine genetic test results. The identification of additional variants and the correction of genotypes allowed the interpretation of the clinical phenotype in 24 subjects, which have been confirmed to be correct by independent experiments. Moreover, we identified a novel 8.4-kb deletion containing the entire HBB and HBD genes as well as part of the HBBP1 gene, expanding the genotype spectrum of β-thalassemia. CATSA showed a great advantage over other genetic tests in the diagnosis of thalassemia caused by rare variants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.