Abstract

We modify the compound Poisson surplus model for an insurer by including liquid reserves and interest on the surplus. When the surplus of an insurer is below a fixed level, the surplus is kept as liquid reserves, which do not earn interest. When the surplus attains the level, the excess of the surplus over the level will receive interest at a constant rate. If the level goes to infinity, the modified model is reduced to the classical compound Poisson risk model. If the level is set to zero, the modified model becomes the compound Poisson risk model with interest. We study ruin probability and other quantities related to ruin in the modified compound Poisson surplus model by the Gerber–Shiu function and discuss the impact of interest and liquid reserves on the ruin probability, the deficit at ruin, and other ruin quantities. First, we derive a system of integro-differential equations for the Gerber–Shiu function. By solving the system of equations, we obtain the general solution for the Gerber–Shiu function. Then, we give the exact solutions for the Gerber–Shiu function when the initial surplus is equal to the liquid reserve level or equal to zero. These solutions are the key to the exact solution for the Gerber–Shiu function in general cases. As applications, we derive the exact solution for the zero discounted Gerber–Shiu function when claim sizes are exponentially distributed and the exact solution for the ruin probability when claim sizes have Erlang(2) distributions. Finally, we use numerical examples to illustrate the impact of interest and liquid reserves on the ruin probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.