Abstract

ABSTRACTIn this article, a new class of distributions is introduced, which generalizes the linear failure rate distribution and is obtained by compounding this distribution and power series class of distributions. This new class of distributions is called the linear failure rate-power series distributions and contains some new distributions such as linear failure rate-geometric, linear failure rate-Poisson, linear failure rate-logarithmic, linear failure rate-binomial distributions, and Rayleigh-power series class of distributions. Some former works such as exponential-power series class of distributions, exponential-geometric, exponential-Poisson, and exponential-logarithmic distributions are special cases of the new proposed model. The ability of the linear failure rate-power series class of distributions is in covering five possible hazard rate function, that is, increasing, decreasing, upside-down bathtub (unimodal), bathtub and increasing-decreasing-increasing shaped. Several properties of this class of distributions such as moments, maximum likelihood estimation procedure via an EM-algorithm and inference for a large sample, are discussed in this article. In order to show the flexibility and potentiality, the fitted results of the new class of distributions and some of its submodels are compared using two real datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.