Abstract

We will characterize the boundedness and compactness of the composition operators on weighted Bloch space \( B_{ \log }= \{ f \in H(D): \sup_{z \in D } (1-\left| z\right|^2) \left( \log \frac{2}{1-\left| z\right|^2} \right)\left| f'(z)\right| \) < \( +\infty \} \), where H(D) be the class of all analytic functions on D.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.