Abstract

The application of reconstituted high-density lipoproteins (rHDL) as a drug-carrier has during the past decade been established as a promising approach for effective receptor-mediated drug delivery, and its ability to target tumors has recently been confirmed in a clinical trial. The rHDL mimics the endogenous HDL, which is known to be highly dynamic and undergo extensive enzyme-mediated remodulations. Hence, to reveal the physiological rHDL stability, a thorough characterization of the dynamics of rHDL in biologically relevant environments is needed. We employ a size-exclusion chromatography (SEC) method to evaluate the dynamics of discoidal rHDL in fetal bovine serum (FBS), where we track both the rHDL lipids (by the fluorescence from lipid-conjugated fluorophores) and apoA-I (by human apoA-I ELISA). We show by using lipoprotein depleted FBS and isolated lipoproteins that rHDL lipids can be transferred to endogenous lipoproteins via direct interactions in a nonenzymatic process, resulting in rHDL compositional- and size-remodeling. This type of dynamics could lead to misinterpretations of fluorescence-based rHDL uptake studies due to desorption of labile lipophilic fluorophores or off-target side effects due to desorption of incorporated drugs. Importantly, we show how the degree of rHDL remodeling can be controlled by the compositional design of the rHDL. Understanding the correlation between the molecular properties of the rHDL constituents and their collective dynamics is essential for improving the rHDL-based drug delivery platform. Taken together, our work highlights the need to carefully consider the compositional design of rHDL and test its stability in a biological relevant environment, when developing rHDL for drug delivery purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.