Abstract

Molecular level Monte Carlo simulations have been performed with various model potentials for the CH 4–N 2 vapor–liquid equilibrium at conditions prevalent in the atmosphere of Saturn’s moon Titan. With a single potential parameter adjustment to reproduce the vapor–liquid equilibrium at a higher temperature, Monte Carlo simulations are in excellent agreement with available laboratory measurements. The results demonstrate the ability of simple pair potential models to describe phase equilibria with the requisite accuracy for atmospheric modeling, while keeping the number of adjustable parameters at a minimum. This allows for stable extrapolation beyond the range of available laboratory measurements into the supercooled region of the phase diagram, so that Monte Carlo simulations can serve as a reference to validate phenomenological models commonly used in atmospheric modeling. This is most important when the relevant region of the phase diagram lies outside the range of laboratory measurements as in the case of Titan. The present Monte Carlo simulations confirm the validity of phenomenological thermodynamic equations of state specifically designed for application to Titan. The validity extends well into the supercooled region of the phase diagram. The possible range of saturation levels of Titan’s troposphere above altitudes of 7 km is found to be completely determined by the remaining uncertainty of the most recent revision of the Cassini-Huygens data, yielding a saturation of 100 ± 6% with respect to CH 4–N 2 condensation up to an altitude of about 20 km.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.