Abstract
Gut microbiota play a central role in the health of animals. The bacteria that individuals acquire as they age may therefore have a profound effect on their future fitness. Since most birds are capable of flight, they can be widely distributed in and adapted to various ecosystems. Moreover, birds are also challenged by the need to digest a wide range of food resources in their guts. However, little is known regarding how the microbial community structure in birds, especially wild birds, changes with host age. Here, we used high-throughput sequencing of the 16S rRNA V3-V4 region to depict the microbial composition and structure in the adults and nestlings of Jankowski's bunting (Emberiza jankowskii), an endangered species of bird, during the breeding season. The results showed that the phyla Proteobacteria (52.45%), Firmicutes (13.87%), Bacteroidetes (5.76%), Actinobacteria (4.95%), Planctomycetes (4.36%), Euryarchaeota (3.20%), Acidobacteria (2.59%), Fusobacteria (2.24%), and Chloroflexi (1.8%) dominated the gut microbial communities in Jankowski's bunting. There was no significant difference in the alpha diversity and richness among different age groups. There was also no significant difference in species richness and diversity between the nestlings and adults. However, we observed different bacterial compositions at the genus level. The genera Photobacterium and Brochothrix were detected only in the nestling groups (at days 3, 6, and 9), while Diplorickettsia was detected only in the adult group. In summary, this study can provide additional information regarding the intestinal microorganisms of wild passerine and grassland birds and provide theoretical evidence for methods to protect Jankowski's bunting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.