Abstract

The nanostructure and chemical distribution in semi-insulating polycrystalline oxygen-doped silicon (SIPOS) deposited on (001) Si and its isothermal transformation behavior at 900 °C were investigated by high resolution electron microscopy (HREM) and electron energy loss nanospectroscopy (EELS). The structure of the as-deposited film, which contained 15 at. % oxygen, was amorphous. No evidence for nanocrystalline second phases was found. It was similar in appearance to amorphous silicon. After annealing for 30 min at 900 °C in an inert environment (N2), a dispersion of small nanocrystals, identified as silicon by imaging, diffraction and EELS, formed in the amorphous SIPOS matrix, with a thin precipitate free zone (PFZ) adjacent to the Si substrate. The SIPOS matrix oxygen concentration increased to 36 at. % and the matrix remained amorphous after annealing. No other phases were observed in annealed specimens. Changes in Si–L near edge fine structure and low loss peaks in EELS spectra from SIPOS with increasing oxygen concentration indicated that it is a solid solution supersaturated with silicon. Microstructures indicated that the Si nanocrystals formed during a homogeneous precipitation reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call