Abstract

In this paper, the complex-type Narayana-Fibonacci numbers are defined. Additionally, we arrive at correlations between the complex-type Narayana-Fibonacci numbers and this generating matrix after deriving the generating matrix for these numbers. Eventually, we get their the Binet formula, the combinatorial, permanental, determinantal, exponential representations, and the sums by matrix methods are just a few examples of numerous features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.