Abstract
We investigate the computational complexity of computing the Hausdorff distance. Specifically, we show that the decision problem of whether the Hausdorff distance of two semi-algebraic sets is bounded by a given threshold is complete for the complexity class { forall exists _{<}mathbb {R}} . This implies that the problem is NP-, co-NP-, exists mathbb {R} -, and forall mathbb {R} -hard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.