Abstract

A k-attack on a graph G is a set of k distinct vertices {a1,…,ak} which are said to be under attack. A k-attack A can be countered or defended by a subset of defender vertices X if and only if there exists an injective function f from A to X, such that either f(ai)=ai or (ai,f(ai)) is an edge of G, for all i, 1≤i≤k. Given a graph G, a subset D of V is a k-defensive dominating set of G if and only if D can counter any k-attack in G. We consider the k-defensive dominating set problem.We start a systematic study on the complexity of the k-defensive dominating set problem. When k is not fixed, we show that it is already co-NP-hard to decide whether a given set of vertices is a k-defensive dominating set or not. However, if k is fixed, then we show that the problem is NP-complete even in split graphs. Subsequently, we consider special graph classes, namely paths, cycles, co-chain graphs and threshold graphs. We show that in each of these graph classes, a k-defensive dominating set of minimum size can be found in linear time even for non-fixed k.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.