Abstract
The subcube partition of a Boolean function is a partition of {0,1}n into the union of subcubes ∪iCi, such that the value of the function f is the same on each vector of Ci, i.e. for every i and x,y∈Ci, f(x)=f(y). The complexity of it denotes by HSCP(f) is the minimum number of subcubes in a subcube partition which computes the Boolean function f. We give a lower bound of the complexity of subcube partitions of Boolean function which relates the additive behaviour of the support and the influence of the function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.