Abstract
Satisfiability problems play a central role in computer science and engineering as a general framework for studying the complexity of various problems. Schaefer proved in 1978 that truth satisfaction of propositional formulas given a language of relations is either NP-complete or tractable. We classify the corresponding satisfying assignment construction problems in the framework of Reverse Mathematics and show that the principles are either provable over RCA 0 or equivalent to WKL 0. We formulate also a Ramseyan version of the problems and state a different dichotomy theorem. However, the different classes arising from this classification are not known to be distinct.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.