Abstract

In many simple integral domains, such as Z or Z[i], there is a straightforward procedure to determine if an element is prime by simply reducing to a direct check of finitely many potential divisors. Despite the fact that such a naive approach does not immediately translate to integral domains like Z[x] or the ring of integers in an algebraic number field, there still exist computational procedures that work to determine the prime elements in these cases. In contrast, we will show how to computably extend Z in such a way that we can control the ordinary integer primes in any Π20 way, all while maintaining unique factorization. As a corollary, we establish the existence of a computable unique factorization domain (UFD) such that the set of primes is Π20-complete in every computable presentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.