Abstract
Object association, i.e., the identification of which observations correspond to the same object, is a central task for the area of multiple object tracking. Two prominent models capturing this task have been introduced in the literature: the Lifted Multicut model and the more recent Lifted Paths model. Here, we carry out a detailed complexity-theoretic study of the problems arising from these two models that is aimed at complementing previous empirical work on object association. We obtain a comprehensive complexity map for both models that takes into account natural restrictions to instances such as possible bounds on the number of frames, number of tracked objects and branching degree, as well as less explicit structural restrictions such as having bounded treewidth. Our results include new fixed-parameter and XP algorithms for the problems as well as hardness proofs which altogether indicate that the Lifted Paths problem exhibits a more favorable complexity behavior than Lifted Multicut.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.