Abstract

We study latching dynamics, i.e. the ability of a network to hop spontaneously from one discrete attractor state to another, which has been proposed as a model of an infinitely recursive process in large scale cortical networks, perhaps associated with higher cortical functions, such as language. We show that latching dynamics can span the range from deterministic to random under the control of a threshold parameter U. In particular, the interesting intermediate case is characterized by an asymmetric and complex set of transitions. We also indicate how finite latching sequences can become infinite, depending on the properties of the transition probability matrix and of its eigenvalues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.