Abstract
Neural networks are frequently used as adaptive classifiers. This research represents an attempt to measure the “neural complexity” of any regular set of binary strings, that is, to quantify the size of a recurrent continuous-valued neural network that is needed for correctly classifying the given regular set. Our estimate provides a predictor that is superior to the size of the minimal automaton that was used as an upper bound so far. Moreover, it is easily computable, using techniques from the theory of rational power series in non-commuting variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.