Abstract
This paper examines and classifies the computational complexity of model checking and satisfiability for hybrid logics over frames with equivalence relations. The considered languages contain all possible combinations of the downarrow binder, the existential binder, the satisfaction operator, and the global modality, ranging from the minimal hybrid language to very expressive languages. For model checking, we separate polynomial-time solvable from PSPACE-complete cases, and for satisfiability, we exhibit cases complete for NP, PSpace, NExpTime, and even N2ExpTime. Our analysis includes the versions of all these languages without atomic propositions, and also complete frames.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.