Abstract
We address the following decision problem: Instance: an undirected graphG. Problem: IsG a cover graph of a lattice? We prove that this problem is NP-complete. This extends results of Brightwell [5] and Nesetřil and Rodl [12]. On the other hand, it follows from Alvarez theorem [2] that recognizing cover graphs of modular or distributive lattices is in P. An important tool in the proof of the first result is the following statement which may be of independent interest: Given an integerl, l⩾3, there exists an algorithm which for a graphG withn vertices yields, in time polynomial inn, a graphH with the number of vertices polynomial inn, and satisfying girth(H)⩾l and χ(H)=χ(G).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.