Abstract

We study the complexity of valued constraint satisfaction problems (VCSPs) parametrized by aconstraint language, a fixed set of cost functions over a finite domain. An instance of the problem is specified by a sum of cost functions from the language and the goal is to minimize the sum. Under the unique games conjecture, the approximability of finite-valued VCSPs is well understood, see Raghavendra [2008]. However, there is no characterization of finite-valued VCSPs, let alone general-valued VCSPs, that can be solved exactly in polynomial time, thus giving insights from a combinatorial optimization perspective.We consider the case of languages containing all possible unary cost functions. In the case of languages consisting of only {0,∞}-valued cost functions (i.e., relations), such languages have been calledconservativeand studied by Bulatov [2003, 2011] and recently by Barto [2011]. Since we study valued languages, we call a languageconservativeif it contains all finite-valued unary cost functions. The computational complexity of conservative valued languages has been studied by Cohen et al. [2006] for languages over Boolean domains, by Deineko et al. [2008] for {0,1}-valued languages (a.k.a Max-CSP), and by Takhanov [2010a] for {0,∞}-valued languages containing all finite-valued unary cost functions (a.k.a. Min-Cost-Hom).We prove a Schaefer-like dichotomy theorem for conservative valued languages: if all cost functions in the language satisfy a certain condition (specified by a complementary combination ofSTP and MJN multimorphisms), then any instance can be solved in polynomial time (via a new algorithm developed in this article), otherwise the language is NP-hard. This is the first complete complexity classification ofgeneral-valued constraint languagesover non-Boolean domains. It is a common phenomenon that complexity classifications of problems over non-Boolean domains are significantly harder than the Boolean cases. The polynomial-time algorithm we present for the tractable cases is a generalization of the submodular minimization problem and a result of Cohen et al. [2008].Our results generalize previous results by Takhanov [2010a] and (a subset of results) by Cohen et al. [2006] and Deineko et al. [2008]. Moreover, our results do not rely on any computer-assisted search as in Deineko et al. [2008], and provide a powerful tool for proving hardness of finite-valued and general-valued languages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.