Abstract

We prove a complexity dichotomy theorem for the most general form of Boolean #CSP where every constraint function takes values in the field of complex numbers C. We first give a non-trivial tractable class of Boolean #CSP which was inspired by holographic reductions. The tractability crucially depends on algebraic cancelations which are absent for non-negative numbers. We then completely characterize all the tractable Boolean #CSP with complex-valued constraints and show that we have found all the tractable ones, and every remaining problem is #P-hard. We also improve our result by proving the same dichotomy theorem holds for Boolean #CSP with maximum degree 3 (every variable appears at most three times). The concept of Congruity and Semi-congruity provides a key insight and plays a decisive role in both the tractability and hardness proofs. We also introduce local holographic reductions as a technique in hardness proofs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.