Abstract

A counting finite-state automaton is a nondeterministic finite-state automaton which, on an input over its input alphabet, (magically) writes in binary the number of accepting computations on the input. We examine the complexity of computing the counting function of an NFA, and the complexity of recognizing its range as a set of binary strings. We also consider the pumping behavior of counting finite-state automata. The class of functions computed by counting NFA's (1) includes a class of functions computed by deterministic finite-state transducers; (2) is contained in the class of functions computed by polynomially time- and linearly space-bounded Turing transducers; (3) includes a function whose range is the composite numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.