Abstract

The complexation with extracellular polymeric substances (EPS) greatly reduces the toxicity of heavy metals towards organisms in the environment. However, the molecular mechanism of EPS−metal complexation remains unclear owing to the limitation of precise analysis for key fractions and functionalities in EPS that associate with metals. Herein, we explored the EPS−Cd (II) complexation by fluorescence excitation emission matrix coupled with parallel factor (EEM−PARAFAC), two-dimensional Fourier transform infrared correlation spectroscopy (2D-FTIR−COS) and X-ray photoelectron spectroscopy (XPS), attempting to explain the mechanisms of EPS in alleviating Cd (II) toxicity toward a green alga Chlorella vulgaris (C. vulgaris). When the algal EPS were removed, the cell internalizations of Cd (II), growth inhibition rate and chlorophyll autofluorescence increased, but the surface adsorption and esterase activities decreased, indicating that the sorption of Cd (II) by EPS was crucial in alleviating the algal toxicity. Moreover, the complexation with proteins in EPS controlled the sorption of Cd (II) to algal EPS, resulting in the chemical static quenching of the proteins fluorescence by 47.69 ± 2.37%. Additionally, the complexing capability of the main functionalities, COO− and C–OH in proteins with Cd (II) was stronger than that of C–O(H) and C–O–C in polysaccharides or C–OH in the humus-related substances. Oxygen atom in protein carboxyl C–O might be the key site of EPS−Cd (II) complexation, supported by the modified Ryan−Weber complexation model and the obvious shift of oxygen valence-electron signal. These findings provide deep insights into understanding the interaction of EPS with heavy metals in aquatic environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call