Abstract

Non-covalent complexes of methylated nitrogenous DNA base guanine (m(9) Gua) with 1 to 6 molecules of anticancer drug ThioTEPA (1,1',1''-phosphorothioyltriaziridine) have been investigated by molecular modeling techniques (molecular docking and DFT geometry optimization), ab initio wavefunction calculations and the quantum theory of atoms in molecules (QTAIM). The accuracy of complex structures predicted by standard molecular docking techniques have been assessed by comparing them with ab initio calculations, and the most important differences have been discussed. Obtained stabilization enthalpies (kcal/mol) for the m(9) Gua⋅⋅⋅(ThioTEPA)n complexes with n=1…6 have been found to be -15.6, -26.5, -38.4, -49.6, -60.5 and -69.3 respectively. The non-covalent interactions revealed by the QTAIM method have been shown to be a dominating factor responsible for the complex stability, with hydrogen bonds of NH⋅⋅⋅N type being the most important interactions in small (n=1 to 4) and CH⋅⋅⋅N bonds - in large (n=5, 6) complexes. The obtained results may help to understand ThioTEPA-DNA interactions and clarify the mechanism of the drug action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.