Abstract

In this study, a new sequence called the complex-typek-Pell number is defined. Also, we give properties of this sequence such as the generating matrix, the generating function, the combinatorial representations, the exponential representation, the sums, the permanental and determinantal representations, and the Binet formula. Then, we determine the periods of the recurrence sequence according to the moduloυand produce cyclic groups with the help of the generating matrices of the sequence. We also get some findings about the ranks and periods of the complex-typek-Pell sequence. Additionally, we create relations between the orders of the cyclic groups produced and the periods of the sequence. Then, this sequence is moved to groups and examined in detail in finite groups. As an application, we get the periods of the complex-type2-Pell numbers in the polyhedral groupsυ,2,2,2,υ,2, and2,2,υand the quaternion groupQ2υ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.