Abstract

BackgroundThe loss of phenotypic characters is a common feature of evolution. Cave organisms provide excellent models for investigating the underlying patterns and processes governing the evolutionary loss of phenotypic traits. The blind Mexican cavefish, Astyanax mexicanus, represents a particularly strong model for both developmental and genetic analyses as these fish can be raised in the laboratory and hybridized with conspecific surface form counterparts to produce large F2 pedigrees. As studies have begun to illuminate the genetic bases for trait evolution in these cavefish, it has become increasingly important to understand these phenotypic changes within the context of cavefish origins. Understanding these origins is a challenge. For instance, widespread convergence on similar features renders morphological characters less informative. In addition, current and past gene flow between surface and cave forms have complicated the delineation of particular cave populations.ResultsPast population-level analyses have sought to: 1) estimate at what time in the geological past cave forms became isolated from surface-dwelling ancestors, 2) define the extent to which cave form populations originated from a common invasion (single origin hypothesis) or several invasions (multiple origin hypothesis), and 3) clarify the role of geological and climatic events in Astyanax cavefish evolution. In recent years, thanks to the combined use of morphological and genetic data, a much clearer picture has emerged regarding the origins of Astyanax cavefish.ConclusionsThe consensus view, based on several recent studies, is that cave forms originated from at least two distinct ancestral surface-dwelling stocks over the past several million years. In addition, each stock gave rise to multiple invasions of the subterranean biotope. The older stock is believed to have invaded the El Abra caves at least three times while the new stock separately invaded the northern Guatemala and western Micos caves. This renewed picture of Astyanax cavefish origins will help investigators draw conclusions regarding the evolution of phenotypic traits through parallelism versus convergence. Additionally, it will help us understand how the presence of cave-associated traits in old versus young cave populations may be influenced by the time since isolation in the cave environment. This will, in turn, help to inform our broader understanding of the forces that govern the evolution of phenotypic loss.

Highlights

  • The loss of phenotypic characters is a common feature of evolution

  • A great deal of attention has returned to the blind Mexican cavefish, Astyanax mexicanus, as a powerful model for genomic and evolutionary research

  • In recent years, through numerous genetic and molecular analyses, a clearer picture of Astyanax cave form origins has emerged from the literature

Read more

Summary

Introduction

The loss of phenotypic characters is a common feature of evolution. Cave organisms provide excellent models for investigating the underlying patterns and processes governing the evolutionary loss of phenotypic traits. As studies have begun to illuminate the genetic bases for trait evolution in these cavefish, it has become increasingly important to understand these phenotypic changes within the context of cavefish origins. A great deal of attention has returned to the blind Mexican cavefish, Astyanax mexicanus, as a powerful model for genomic and evolutionary research. This is a credit to the tractability of Astyanax as a laboratory animal and the availability of both surface and cave morphotypes. The origin of a cave-limited trait, present widely across different cave forms, will be interpreted differently (e.g., through rapid selection versus drift) depending on the estimated time since isolation of cave forms from their surface-dwelling ancestors [3]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call