Abstract

In this paper, the complex multi-symplectic method and the implementation of the generalized sinh- Gordon equation are investigated in detail. The multi-symplectic formulations of the generalized sinh-Gordon equation in Hamiltonian space are presented firstly. The complex method is introduced and a complex semi-implicit scheme with several discrete conservation laws (including a multi-symplectic conservation law (CLS), a local energy conservation law (ECL) as well as a local momentum conservation law (MCL)) is constructed to solve the partial differential equations (PDEs) that are derived from the generalized sinh- Gordon equation numerically. The results of the numerical experiments show that the multi-symplectic scheme has excellent long-time numerical behavior and high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.