Abstract
Cyclic proof systems, in which induction is managed implicitly, are a promising approach to automatic verification. The soundness of cyclic proof graphs is ensured by checking them against a trace-based Infinite Descent property. Although the problem of checking Infinite Descent is known to be PSPACE-complete, this leaves much room for variation in practice. Indeed, a number of different approaches are employed across the various cyclic proof systems described in the literature. In this paper, we study criteria for Infinite Descent in an abstract, logic-independent setting. We look at criteria based on Büchi automata encodings and relational abstractions, and determine their parameterized time complexities in terms of natural dimensions of cyclic proofs: the numbers of vertices of the proof-tree graphs, and the vertex width—an upper bound on the number of components (e.g., formulas) of a sequent that can be simultaneously tracked for descent. We identify novel algorithms that improve upon the parameterised complexity of the existing algorithms. We implement the studied criteria and compare their performance on various benchmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.