Abstract

Due to their natural geochemistry, intertidal estuarine ecosystems are vulnerable to bioaccumulation of methylmercury (MeHg), a neurotoxin that readily bioaccumulates in organisms. Determining MeHg concentrations in intertidal invertebrates at the base of the food web is crucial in determining MeHg exposure in higher trophic level organisms like fish and birds. The processes that govern the production of MeHg in coastal ecosystems are influenced by many geochemical factors including sulfur species, organic matter, and salinity. The interactions of these factors with mercury are complex, and a wide variety of results have been reported in the literature. This paper reviews conceptual models to better clarify the various geochemical and physical factors that impact MeHg production and bioavailability in intertidal ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call