Abstract
In this study, we analyzed the influence of El Nino–Southern Oscillation (ENSO) on the spatio-temporal variability of droughts in Ecuador for a 48-year period (1965–2012). Droughts were quantified from 22 high-quality and homogenized time series of precipitation and air temperature by means of the Standardized Precipitation Evapotranspiration Index. In addition, the propagation of two different ENSO indices (El Nino 3.4 and El Nino 1 + 2 indices) and other atmospheric circulation processes (e.g., vertical velocity) on different time-scales of drought severity were investigated. The results showed a very complex influence of ENSO on drought behavior across Ecuador, with two regional patterns in the evolution of droughts: (1) the Andean chain with no changes in drought severity, and (2) the Western plains with less severe and frequent droughts. We also detected that drought variability in the Andes mountains is explained by the El Nino 3.4 index [sea surface temperature (SST) anomalies in the central Pacific], whereas the Western plains are much more driven by El Nino 1 + 2 index (SST anomalies in the eastern Pacific). Moreover, it was also observed that El Nino and La Nina phases enhance droughts in the Andes and Western plains regions, respectively. The results of this work could be crucial for predicting and monitoring drought variability and intensity in Ecuador.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.