Abstract
In the paper arXiv:1802.03250, a criterion for exponential mixing is established for a class of random dynamical systems. In that paper, the criterion is applied to PDEs perturbed by a noise localised in the Fourier space. In the present paper, we show that, in the case of the complex Ginzburg-Landau (CGL) equation, that criterion can be used to consider even more degenerate noise that is localised both in physical and Fourier spaces. This is achieved by checking that the linearised equation is almost surely approximately controllable. We also study the problem of controllability of the nonlinear CGL equation. Using Agrachev-Sarychev type arguments, we prove an approximate controllability property in the case of a control force which is again localised in physical and Fourier spaces.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.