Abstract

Folding proteins into their native states requires the formation of both secondary and tertiary structures. Many questions remain, however, as to whether these form into a precise order, and various pictures have been proposed that place the emphasis on the first or the second level of structure in describing folding. One of the favorite test models for studying this question is the B domain of protein A, which has been characterized by numerous experiments and simulations. Using the activation-relaxation technique coupled with a generic energy model (optimized potential for efficient peptide structure prediction), we generate more than 50 folding trajectories for this 60-residue protein. While the folding pathways to the native state are fully consistent with the funnel-like description of the free energy landscape, we find a wide range of mechanisms in which secondary and tertiary structures form in various orders. Our nonbiased simulations also reveal the presence of a significant number of non-native beta and alpha conformations both on and off pathway, including the visit, for a non-negligible fraction of trajectories, of fully ordered structures resembling the native state of nonhomologous proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call