Abstract

We consider a zero-sum stochastic game with finitely many states and actions. Further we assume that the transition probabilities depend on the actions of only one player (player II, in our case), and that the game is completely mixed. That is, every optimal stationary strategy for either player assigns a positive probability to every action in every state. For these games, properties analogous to those derived by Kaplansky [4] for the completely mixed matrix games, are established in this paper. These properties lead to the counterintuitive conclusion that the controller need not know the law of motion in order to play optimally, but his opponent does not have this luxury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.