Abstract

Nebulin is a giant ( M r 750–850 kDa), modular sarcomeric protein proposed to regulate the assembly, and to specify the precise lengths of actin (thin) filaments in vertebrate skeletal muscles. Nebulin's potential role as a molecular template is based on its structural and biochemical properties. Its central ∼700 kDa portion associates with actin along the entire length of the thin filament, its N-terminal region extends to thin filament pointed ends, and ∼80 kDa of its C-terminal region integrates within the Z-line lattice. Here, we determined the exon/intron organization of the entire mouse nebulin gene, which contains 165 exons in a 202 kb segment. We identified 16 novel exons, 15 of which encode nebulin-repeat motifs (12 from its central region and 3 from its Z-line region). One novel exon shares high sequence homology to the 20 residue repeats of the tight-junction protein, ZO-1. RT-PCR analyses revealed that all 16 novel exons are expressed in mouse skeletal muscle. Surprisingly, we also amplified mRNA transcripts from mouse and human heart cDNA using primers designed along the entire length of nebulin. The expression of cardiac-specific nebulin transcripts was confirmed by in situ hybridization in fetal rat cardiomyocytes and in embryonic Xenopus laevis (frog) heart. On the protein level, antibodies specific for skeletal muscle nebulin's N and C-terminal regions stained isolated rat cardiac myofibrils at the pointed and barbed ends of thin filaments, respectively. These data indicate a conserved molecular layout of the nebulin filament systems in both cardiac and skeletal myofibrils. We propose that thin filament length regulation in cardiac and skeletal muscles may share conserved nebulin-based mechanisms, and that nebulin isoform diversity may contribute to thin filament length differences in cardiac and skeletal muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.