Abstract

Forest musk deer (FMD) is an endangered species, and its population size has dropped dramatically. In this study, we determined the complete mitochondrial genome of a FMD. The genome was 16,353 bp long, and contained 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and one control region. Most PCGs were distributed on the heavy strand except ND6 and eight tRNA genes, which were encoded on the light strand. The nucleotide composition was asymmetric, with an overall A+T content of 62.1%. Comparison with one previously described mitochondrial genome revealed 94.4% sequence homology and 1128 nucleotide mutation sites, which represents a substantial difference. A phylogenetic tree based on Cytb genes of eight closely related musk deer species showed that our sample clustered with two FMD subspecies from Yunnan, China. These results provide novel molecular information that can potentially be used for genetic diversity conservation of this species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call