Abstract

BackgroundComplete mitochondrial (mt) genomes and the gene rearrangements therein are increasingly used as molecular markers for investigating phylogenetic relationships, especially for elucidating deep splits. Contributing to the complete mt genomes of arthropods, especially Arachnida, available so far, we provide the first complete mt genome of a sarcoptiform mite species, the sexually reproducing oribatid mite Steganacarus magnus (Acari, Oribatida) which was determined by sequencing of long PCR products.ResultsThe mt genome of S. magnus lacks 16 tRNAs, only those for leucine, histidine, proline, tryptophan, glutamine and serine are present. Within those tRNAs only tRNA-His and tRNA-Pro have kept their original position, the others are translocated. Furthermore, the mt genome of S. magnus consists of 13,818 bp and it is composed of 13 protein-coding genes and two genes for the ribosomal RNA subunits that are typically found in metazoan mt genomes. The gene order in S. magnus differs from the hypothetical ancestral chelicerate arrangement as conserved in Limulus polyphemus: instead of nad1-rrnL-rrnS-LNR-nad2 (tRNAs excluded) S. magnus is nad2-rrnL-nad1-rrnS-LNR. Phylogenetic analyses of a concatenated amino acid dataset of all mt protein-coding genes of 28 arthropod species suggest a sister-group relationship of sarcoptiform and prostigmatid mites (S. magnus and Leptotrombidium).ConclusionThe mt gene arrangement of S. magnus differs from the hypothetical ground plan of arthropods and from that of other mites further contributing to the variety of mt gene arrangements found in Arachnida. The unexpected lack of tRNAs is enigmatic, probably showing that the loss of mt genes is an ongoing evolutionary process. For solving phylogenetic relationships of oribatid mite lineages and their position within Acari further complete mt genomes are needed.

Highlights

  • Complete mitochondrial genomes and the gene rearrangements therein are increasingly used as molecular markers for investigating phylogenetic relationships, especially for elucidating deep splits

  • The mt gene arrangement of S. magnus differs from the hypothetical ground plan of arthropods and from that of other mites further contributing to the variety of mt gene arrangements found in Arachnida

  • Mitochondrial genome organization The mt genome of S. magnus is the first genome published for the large mite group of Sarcoptiformes

Read more

Summary

Introduction

Complete mitochondrial (mt) genomes and the gene rearrangements therein are increasingly used as molecular markers for investigating phylogenetic relationships, especially for elucidating deep splits. Mitochondria are maternally inherited cell organelles that contain a circular genome of about 14–19 kb in bilaterian animals; the mitochondrial (mt) DNA in metazoans usually codes for 13 proteins, 22 transfer RNAs (tRNA), two ribosomal RNAs (rRNA; large (rrnL) and small (rrnS) ribosomal subunit) and contains a non-coding control region (LNR) of variable length [1,2]. The positions of the relatively small genes for tRNAs frequently vary within and among taxa. The arrangement of the hypothetical ancestor of arthropods is conserved in the horseshoe crab Limulus polyphemus [12], whereas most insect genomes differ from the ancestral state by the location of one tRNA [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call